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ABSTRACT It has been demonstrated that the adi-
pose tissue, a highly functional metabolic tissue, is a
reservoir of mesenchymal stem cells. The potential use
of adipose-derived stem cells (ADSCs) from white
adipose tissue (WAT) for organ repair and regenera-
tion has been considered because of their obvious
benefits in terms of accessibility and quantity of avail-
able sample. However, the functional capability of
ADSCs from subjects with different adiposity has not
been investigated. It has been our hypothesis that
ADSCs from adipose tissue of patients with metabolic
syndrome and high adiposity may be functionally im-
paired. We report that subcutaneous WAT stromal
vascular fraction (SVF) from nonobese individuals had
a significantly higher number of CD90� cells than SVF
from obese patients. The isolated ADSCs from WAT of
obese patients had reduced differentiation potential
and were less proangiogenic. Therefore, ADSCs in
adipose tissue of obese patients have lower capacity for
spontaneous or therapeutic repair than ADSCs from
nonobese metabolically normal individuals.—Oñate,
B., Vilahur, G., Ferrer-Lorente, R., Ybarra, J., Díez-
Caballero, A., Ballesta-López, C., Moscatiello, F., Her-

rero, J., Badimon, L. The subcutaneous adipose tissue
reservoir of functionally active stem cells is reduced in
obese patients. FASEB J. 26, 4327–4336 (2012). www.
fasebj.org
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Adipose tissue, traditionally regarded as an energy
storage organ, is now considered an endocrine tissue
and a source of adult stem cells, adipose-derived stem
cells (ADSCs; ref. 1). ADSCs share many properties with
the well-described bone marrow mesenchymal stem
cells (BM-MSCs), including ex vivo expansion, differen-
tiation capacity, and mesenchymal characteristic lin-
eage markers (2). However, in contrast to BM-MSCs,
ADSCs can be easily isolated from human subcutaneous
adipose tissue and in great quantities (3), which makes
them an attractive alternative for cell therapy purposes.
Among the most interesting characteristics of ADSCs is
their potential to stimulate angiogenesis, reduce apoptosis,
and exert anti-inflammatory properties, which suggests
an active role of ADSCs in revascularization of ischemic
damaged tissues (4–8). Most of these effects are be-
lieved to be mediated via paracrine activity.

At present, age, adipose tissue depot site, and gender
have been shown to modify the number and the
proliferation, differentiation, and angiogenic capacity
of ADSCs (9–13). However, the effect of cardiovascular
risk factors on ADSC potential has not been previously
addressed. Indeed, several human studies have demon-
strated that hypercholesterolemia, diabetes, and hyper-
tension impair the number and function of bone
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marrow-derived circulating progenitor cells (14–21).
Yet, the effect of different degree of adiposity and/or
metabolic syndrome on the functional capability of
adult stem cells—particularly in ADSCs—has not been
investigated. We hypothesized that human ADSCs from
obese patients with metabolic syndrome may have
impaired capabilities for spontaneous or therapeutic
tissue repair. Here we report that ADSCs from white
adipose tissue (WAT) of patients with obesity and
metabolic syndrome have lower proliferative and angio-
genic potential than ADSCs from WAT of nonobese
metabolically normal individuals.

MATERIALS AND METHODS

Subjects

Subcutaneous WAT was obtained from morbidly obese pa-
tients [body mass index (BMI)�40 kg/m2; n�16] that un-
derwent bypass gastric surgery and from nonobese patients
(BMI�25 kg/m2; n�8) who underwent liposuction surgery.
During the procedures, bypass gastric surgery patients were
kept with isofluorane (2%), whereas liposuction surgery was
performed under propofol/ramifentanil. Tissues were ob-
tained with informed consent from patients, and the study
protocol was approved by the Centro Medico Teknon Ethical
Committee, consistent with the principles of the Declaration
of Helsinki. Blood samples from all subjects were obtained at
the time of intervention in order to evaluate the following
biochemical parameters: glucose, triglyceride, total choles-
terol, high-density lipoprotein (HDL) cholesterol, low-density
lipoprotein (LDL) cholesterol, urea, total proteins, glutamic
oxaloacetic transaminase, glutamic pyruvic transaminase, and
creatinine levels. Patients used regular medication as recom-
mended in the guidelines if it was necessary.

Cell isolation and culture

Isolation of ADSCs was performed with a modified method of
a previously described technique (1). Briefly, adipose tissue
was washed, minced, and digested with 1 mg/ml collagenase
I-A (Sigma-Aldrich, St. Louis, MO, USA) in Dulbecco’s mod-
ified Eagle’s medium (DMEM; Gibco; Life Technologies,
Inc., Grand Island, NY, USA) for 1 h at 37°C with gentle
agitation. The digested tissue was sequentially filtered
through a 100-�m mesh and centrifuged for 10 min at 1200
rpm at room temperature. The supernatant, containing ma-
ture adipocytes, was aspirated, and the pellet was identified as
the stromal vascular fraction (SVF). SVF was resuspended in
culture medium [DMEM supplemented with 10% fetal bo-
vine serum (FBS) and 100 U/ml penicillin and 100 �g/ml
streptomycin (P/S); Gibco] and seeded. Finally, cells were
incubated overnight at 37°C with 5% CO2 under two different
oxygen conditions: normoxic (21% O2) and hypoxic (1%
O2). At 24 h after incubation, the medium was changed to
remove nonadherent cells. Adherent cells were referred as
ADSCs. For ADSC expansion, medium was changed every 2–3
d. Cells were always maintained under the original oxygen
condition in all passages.

Flow cytometry characterization

Surface marker analysis of the SVF, ADSCs from nonobese
individuals (ADSCns), and ADSCs from morbidly obese pa-

tients (ADSCmos), cultured under normoxic and hypoxic
conditions (passage 3), was performed by using the fluores-
cein isothiocyanate- or phycoerythrin-conjugated monoclonal
antibodies (mAbs) against CD105, CD90, CD29, CD44, CD45,
and CD34 and their respective isotype control mAbs (BD
Biosciences, San Diego, CA, USA). Briefly, the cell suspension
was washed and resuspended with 1� PBS supplemented with
3% bovine serum albumin (BSA; Sigma-Aldrich) and 0.1%
sodium azide. Cells (106) were incubated with the specific
mAbs at 4°C for 30 min, fixed with 1� PBS supplemented
with 3% BSA, 0.1% sodium azide, and 0.1% paraformalde-
hyde and analyzed by flow cytometry. Before acquiring SVF
cells, erythrocytes were lysed with 1 ml of quick lysis solution
(Cytognos, Salamanca, Spain). At least 3 � 104 events were
acquired from each sample.

Growth kinetics of ADSCs

To determine the growth kinetics of cultured ADSCs, wells were
seeded with 104 cells/well (passage 3) and cultured under both
normoxic and hypoxic conditions, as described previously (22).
Cells from 2 duplicate wells were harvested and counted every
other day. ADSC numbers were plotted against the number of
days cultured. The exponential-growth phase was deter-
mined, and population doubling time (PDT) was calculated
using the formula PDT � Te/[(log N2 � log N1)/log2], where
Te is time (d) in the exponential-growth phase, N1 is the
number of cells at the beginning of the exponential-growth
phase, and N2 is the number of cells at the end of the
exponential-growth phase.

Relative real-time polymerase chain reaction (PCR) and
gene expression

Total RNA was extracted from undifferentiated ADSCns and
ADSCmos, and from adipocyte- and endothelial cell (EC)-
differentiated ADSCns and ADSCmos by using the RNeasy
Mini Kit (Qiagen, Valencia, CA, USA) according to the
manufacturer’s protocol. The High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems; Life Technologies,
Foster City, CA, USA) was used for reverse transcription of
RNA. The expression of adipocyte [lipoprotein lipase (LPL)
and fatty acid binding protein 4 (FABP4)] and EC markers
[platelet EC adhesion molecule 1 (PECAM-1), vascular endo-
thelial growth factor receptor 2 (VEGFR2), VEGFR1, and von
Willebrand factor (vWF)] and thrombospondin 1 (TSP-1)
were evaluated at the mRNA level by PCR assays (Applied
Biosystems, Life Technologies), conducted according to the
manufacturer’s instructions. Relative gene expression values
were calculated by the ��Ct method. The raw gene expres-
sion values were normalized according to the expression of
TATA-binding protein (TBP) gene.

Western blotting

Whole-cell extracts of ADSCns and ADSCmos cultured under
hypoxic conditions were made in RIPA buffer. Total protein
in cell extracts was determined, and 25 �g cell lysate was
subjected to electrophoresis on 8% gels and then transferred
to nitrocellulose membrane. After blocking in 5% nonfat
milk 1 h at room temperature, blots were incubated with
TSP-1 antibody (1:1000; mouse mAb; Abcam, Cambridge,
UK) at 4°C overnight. Secondary antibody consisted of horse-
radish peroxidase-conjugated antibodies (Dako, Glostrup,
Denmark) and was detected using the SuperSignal chemilu-
minescence system (Pierce; Rockford, IL, USA). Protein
expression was determined using Image Lab software (Bio-
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Rad, Richmond, CA, USA), and �-tubulin (Abcam) was used
for protein loading control.

TSP-1 ELISA

Conditioned medium of ADSCns and ADSCmos cultured
under hypoxic conditions was collected, and TSP-1 was quan-
tified using a Quantikine kit (R&D Systems; Abingdon, UK),
according to the manufacturer’s protocol. All values were
normalized to total medium protein.

In vitro tube formation assay

Conditioned medium was collected from ADSCns and ADSCmos
cultured under hypoxic conditions. Human umbilical vein ECs
(HUVECs) at passage 5 were seeded in 96-well plates coated with
growth factor-reduced Matrigel (BD Biosciences) at a density of
2 � 104 cells/well. HUVEC growth medium was supplemented
with conditioned medium (1:1). Al least 3 wells were used for
each sample of conditioned medium. HUVEC serum-free
growth medium and nonconditioned ADSC culture medium
were used as a negative control; HUVEC growth medium (20%
FBS) served as positive control. Plates were incubated at 37°C
with 5% CO2 and 21% O2 for 6 h. Total length of tubular
structures was counted with ImageJ 1.43u software (U.S. Na-
tional Institutes of Health, Bethesda, MD, USA).

In vitro cell differentiation

For differentiation studies, ADSCs at passage 3 and cultured
under hypoxic conditions were plated at a density of 2 � 103

cells/cm2 on 6-well culture plates and were allowed to grow to
confluence. The culture medium was then replaced with the
specific differentiation medium, which was changed every 2–3
d for the full induction period.

Adipogenic differentiation

Confluent cells were cultured in adipogenic medium with
DMEM supplemented with 10% FBS, 1% P/S, 0.5 mM
3-isobutyl-1-methylxanthine (Sigma-Aldrich), 1 �M dexa-
methasone (Sigma-Aldrich), 200 �M indomethacin (Sigma-

Aldrich) and 1.7 �M insulin (Sigma-Aldrich) (23). Culture
medium was changed every 2–3 d for 21 d. Differentiated cells
were detected with Herxheimer staining for identifying intra-
cellular lipid accumulation and by examining the expression
of the adipocyte cell markers LPL and FABP4 using real-time
PCR.

EC differentiation

Cells were cultured with EC differentiated medium [M-199
supplemented with 3% FBS, 1% P/S (Life Technologies), 10
ng/�l fibroblast growth factor (BD Biosciences), and 50
ng/�l VEGF (Sigma-Aldrich)] for 7 d. Subsequent differen-
tiation was evaluated by cord formation on plating on Matri-
gel (BD Biosciences; ref. 24) and by examining expression of
the EC markers PECAM-1, VEGFR2, VEGFR1, and vWF by
PCR.

Statistical analyses

Statistical analyses were performed using StatView software.
Data are expressed as means 	 se. Statistical significance was
assessed by unpaired Student’s t test. Values of P � 0.05 were
considered statistically significant. Correlation significances
were determined as linear correlations.

RESULTS

Patient data

The clinical characteristics of the subjects are detailed
in Table 1. For analytical purposes, subjects were
grouped by BMI. As such, morbidly obese patients
(n�16) presented a BMI � 40 kg/m2 (44.44	1.29
kg/m2) whereas nonobese individuals (n�8) presented
a BMI � 25 kg/m2 (22.26	0.88 kg/m2). Morbidly
obese patients had hyperglycemia (142.13	11.95
mg/dl glucose; P�0.05) and lower levels of HDL
cholesterol and total cholesterol/HDL ratio than nono-

TABLE 1. Clinical characteristics of the subjects who participate in the study

Characteristic Morbidly obese patients Nonobese individuals P

n 16 8
Age 41.56 	 3.07 38.28 	 2.48 NS
BMI (kg/m2) 44.44 	 1.29 22.26 	 0.88 �0.0001
Biochemical parameter

Glucose (mg/dl) 142.13 	 11.95 61.54 	 7.35 0.0003
Triglyceride (mg/dl) 135.00 	 18.41 131.14 	 40.72 NS
Cholesterol (mg/dl) 184.19 	 10.58 186.71 	 9.41 NS
HDL (mg/dl) 33.20 	 3.05 48.32 	 2.82 0.0045
LDL (mg/dl) 133.33 	 12.97 157.43 	 11.33 NS
Urea (mg/dl) 23.61 	 1.90 29.03 	 2.71 NS
Total protein (g/dl) 7.16 	 0.31 7.03 	 0.35 NS
GOT (U/L) 17.78 	 2.98 32.50 	 14.58 NS
GPT (U/L) 19.32 	 4.67 33.72 	 16.54 NS
GPT/GOT 1.15 	 0.11 0.94 	 0.14 NS
Creatinine (mg/dl) 0.83 	 0.07 0.55 	 0.10 0.036
Cholesterol/HDL 5.92 	 0.48 3.98 	 0.38 0.01
HDL/LDL 0.25 	 0.03 0.31 	 0.02 NS

Data are presented as the means 	 se. GOT, glutamic oxaloacetic transaminase; GPT, glutamic
pyruvic transaminase; NS, not significant.
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bese individuals (P�0.05), supporting their metabolic
syndrome condition.

SVF and ADSC phenotypic characterization

We analyzed the presence of ADSC surface markers
(CD90, CD29, and CD44) in the subcutaneous SVF
from WAT of morbidly obese and nonobese subjects.
CD45 was used as a marker of hematopoietic cells
(Table 2). Flow cytometry results revealed the presence
of higher numbers of CD90
 cells in WAT from nono-
bese individuals (35.31	7.7%) than in WAT of mor-
bidly obese patients (19.11	3.07%). No differences
between groups were seen when we analyzed CD29


(nonobese: 32.16	8.94%; morbidly obese: 34.82	6.99%)
and CD44
 (nonobese: 9.05	5.91%; morbidly obese:
6.49	1.32%) cells.

ADSCns and ADSCmos were harvested and cultured in
two different oxygen conditions: normoxia (21% O2) and
hypoxia (1% O2). After in vitro culture (passage 3) we
measured the presence of CD90, CD29, CD44, CD105,
CD34, and CD45 in the cultured cells. The percentages of
CD90
, CD29
, CD44
, and CD105
 cells achieved 90–
100% in both groups of subjects regardless of oxygen
culture conditions (Table 3). No CD45
 or CD34
 cells
were observed in the cultured cells.

Growth kinetics of cultured ADSCs under normoxic
and hypoxic conditions

To evaluate the effects of oxygen concentration on
ADSCn and ADSCmo growth, we analyzed the effect of

both normoxic and hypoxic conditions (Fig. 1A) in
growth kinetics up to 10 d.

When ADSC numbers were monitored over time, an
exponential cell growth curve was obtained (Fig. 1B, C).
When comparing ADSC growth curves in both oxygen
conditions, ADSCs cultured in hypoxic conditions
showed faster growth kinetics than ADSCs cultured in
normoxic conditions (P�0.05). This significant effect
was shown in both ADSCns (Fig. 1B) and ADSCmos
(Fig. 1C). The lag phase before cell growth was longer
in ADSCns than in ADSCmos in both oxygen condi-
tions, but the differences did not reach statistical sig-
nificance (Fig. 1D).

PDT was calculated from the exponential-growth phase
of the growth curves. PDT was longer in ADSCmos than in
ADSCns cultured in normoxic conditions (ADSCmos:
3.20	0.06 d, ADSCns: 2.38	0.21 d; P�0.05; Fig. 1E) and
in hypoxic conditions (ADSCmos: 2.66	0.085 d, ADSCns:
1.88	0.055 d; P�0.0005; Fig. 1F). Indeed, ADSCs from
subcutaneous WAT of obese patients were significantly
less proliferative than ADSCs from subcutaneous WAT of
nonobese individuals.

Angiogenic potential

To study the angiogenic potential of ADSCns and
ADSCmos, we measured the gene and protein ex-
pression levels of the antiangiogenic molecule TSP-1.
ADSCmos presented higher expression levels of
TSP-1 as both mRNA [ADSCns: 556.15	284.16 arbi-
trary units (AU), ADSCmos: 2017.96	324.88 AU;
P�0.016; Fig. 2A] and protein (ADSCns: 0.13	0.05
AU, ADSCmos: 0.98	0.22 AU; P�0.0024; Fig. 2B).
These values correlate with BMI (mRNA: R2�0.44,
P�0.0037; protein: R2�0.49, P�0.0025). TSP-1 se-
creted levels (Fig. 2C) were higher in ADSCmo than
ADSCn conditioned medium (ADSCn: 71.78	12.56
ng TSP-1/mg total protein, ADSCmo: 121.06	12.2
ng TSP-1/mg total protein). When we analyzed the
effect of the conditioned medium from ADSCmos
and ADSCns on the capillary-like tube formation
capacity of HUVECs in Matrigel (Fig. 2D), we found
that conditioned medium from ADSCmos induced
a significantly reduced formation of capillary-like
structures (ADSCns: 9813.31	1086.65 AU, ADSCmos:
7387.78	518.34 AU; P�0.035; Fig. 2D).

TABLE 2. Phenotypic characterization of human subcutaneous
stromal vascular fraction

Antigen
Nonobese
individuals

Morbidly obese
patients P

CD90
 (%) 35.31 	 7.70 19.11 	 3.07 �0.05
CD29
 (%) 32.16 	 8.94 34.82 	 6.99 NS
CD44
 (%) 9.05 	 5.91 6.49 	 1.32 NS
CD45
 (%) 14.40 	 5.30 7.47 	 1.81 NS

Percentages of ADSC surface markers were analyzed in the
subcutaneous stromal vascular fraction from nonobese individuals
and morbidly obese patients. Data are presented as means 	 se; NS,
not significant.

TABLE 3. Phenotypic characterization of human ADSCs

Antigen

Normoxic conditions Hypoxic conditions

PADSCn ADSCmo ADSCn ADSCmo

CD90
 (%) 96.79 	 1.86 98.7 	 0.67 98.29 	 1.45 99.80 	 0.11 NS
CD29
 (%) 99.33 	 1.34 99.60 	 0.50 96.60 	 1.90 93.05 	 5.36 NS
CD44
 (%) 95.73 	 1.49 98.40 	 1.30 95.97 	 7.50 91.00 	 7.13 NS
CD105
 (%) 92.6 	 1.5 93.7 	 0.7 91.2 	 2.1 94 	 0.9 NS
CD34
 (%) 0.3 	 0.1 0.1 	 0.1 0.6 	 0.3 0.1 	 0.1 NS
CD45
 (%) 0.00 	 0.00 0.00 	 0.00 0.00 	 0.00 0.00 	 0.00 NS

ADSC surface markers were analyzed in ADSCns and ADSCmos cultured after 3 passages under normoxia (21% O2) or hypoxia (1% O2)
conditions. Data are presented as means 	 se. NS, not significant.
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Adipogenic differentiation capacity

To evaluate the potential of ADSCns and ADSCmos to
differentiate, cells cultured in hypoxic conditions were
induced to differentiate to adipocytes (Fig. 3). Both cell
types showed adipocyte differentiation; however, ADSCns
showed larger-size lipid vesicles positive for Herxheimer’s
staining (Fig. 3A). Moreover, differentiated ADSCns
showed a significantly higher expression of the adipocyte
cell markers FABP4 (ADSCns: 22,400-fold, ADSCmos:
4300-fold) and LPL (ADSCns: 30,000-fold, ADSCmos:
1700-fold; Fig. 3B).

EC differentiation capacity

ADSCns and ADSCmos showed EC differentiation
(Fig. 4). While undifferentiated ADSCns and ADSCmos

did not form capillary-like ring structures in Matrigel (Fig.
4A), EC-differentiated ADSCs formed capillary-like net-
works. These networks were of similar lengths for both
EC-differentiated ADSCs (ADSCns: 6264.81	1454.23 AU,
ADSCmos: 7040.72	1234.94 AU; Fig. 4B).

The expression of EC molecular markers in differenti-
ated and undifferentiated ADSCns and ADSCmos (Fig. 5)
showed some differences. ADSCns and ADSCmos signifi-
cantly increased the expression of PECAM-1 after EC
differentiation (ADSCns: 17-fold, P�0.03; ADSCmos: 12-
fold, P�0.0028). Expression levels of VEGFR1 were not
modified after EC differentiation, although a nonsignifi-
cantly higher expression was seen in ADSCmos before
and after differentiation. VEGFR2, CD34, and vWF had
very low expression levels regardless of cell type and the
differentiation process in these cells.
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Figure 1. Human ADSCn and ADSCmo growth
kinetics. A) ADSCns and ADSCmos cultured un-
der normoxia (21% O2) or hypoxia conditions
(1% O2). B–D) Growth curves of ADSCns (B),
ADSCmos (C), and lag-phase values (D). E, F) PDT
under normoxia (E) and hypoxia conditions (F).
*P � 0.05 vs. normoxia; #P � 0.05 vs. ADSCns.
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DISCUSSION

ADSCs have recently become an alternative source of
pluripotent stem cells for cell therapy. Certainly, ADSCs
have been used in various preclinical models and clinical
trials. However, previous studies using circulating progen-
itor cells from patients with cardiovascular risk factors
have shown impaired properties. As such, evidence sug-
gests that smoking, hypertension, coronary artery disease,
diabetes, and hypercholesterolemia reduce the number
and functional activities of isolated endothelial progenitor
cells. Endothelial progenitor cell proliferation, migration,
adhesion, and in vitro vasculogenesis are impaired in
patients with cardiovascular risk factors (14, 17–21, 25,
26). As to ADSCs, age, adipose tissue depot site, and

gender have the potential to modify the functionality and
quality of ADSCs (9–13). However, little is known about
the effect of obesity in endogenous ADSCs. In the present
study, we compared subcutaneous ADSCs from morbidly
obese patients and from nonobese individuals, analyzing
growth behavior, differentiation capacity, and angiogenic
potential.

We observed that WAT from morbidly obese patients
presented a lower percentage of CD90
 cells within the
SVF. This result is in agreement with a study reporting
reduced committed preadipocyte numbers in obese
patients (27). However, the percentages of CD29
 and
CD44
 cells were similar in SVFs from both morbidly
obese and nonobese subjects.
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For clinical cell therapy purposes, it would be bene-
ficial to obtain the most ADSCs in the shortest period of
time. Hypoxia is an important microenviromental fac-
tor in major aspects of stem cell biology, including
survival, proliferation viability, pluripotency mainte-
nance, differentiation, and migration (28–32). Despite
the fact that the anatomical sites of MSC niches in the
body are relatively oxygen deficient, MSCs are usually
cultured under normoxic conditions. Although hyp-
oxia, concomitant with serum deprivation, has been
demonstrated to induce apoptosis in MSCs (33, 34),
culturing MSCs under physiologically relevant low-oxy-
gen-tension conditions may uniquely benefit the prolif-
eration, differentiation, growth factor secretion, and
migration/homing potential of transplanted cells. Pre-
vious studies have demonstrated that culturing BM-
MSCs and human ADSCs under hypoxic conditions

increased their proliferation capacity (30, 35, 36),
although those cells presented an extended lag phase
in order to acclimatize to culture conditions (29).
Moreover, it has been shown that hypoxia increases
angiogenic potential and the release of paracrine fac-
tors in murine and human BM-MSCs and ADSCs (35,
37–39). Indeed, the tissue-regenerative potential of
BM-MSCs in the repair of murine infarcted myocar-
dium and hindlimb ischemia (32, 37) and MSC wound-
healing effects (36, 40) has been improved by hypoxic
preconditioning. Therefore, we cultured ADSCns and
ADSCmos under two different oxygen conditions (nor-
moxia and hypoxia) in order to compare growth kinet-
ics and function between ADSCmo and ADSCn. Firstly,
when we cultured ADSCs under normoxic conditions,
both ADSCns and ADSCmos were 90–100% positive for
CD90, CD29, CD105, and CD44. ADSCs cultured under
hypoxic conditions elicited similar results in surface
marker expression of pluripotency. These results
showed that neither hypoxia nor obesity modifies the
molecular phenotype of expanded ADSCs.

However, we tested the effects of cell culture oxygen
levels on cellular function. Hypoxia seems to modify
ADSC proliferation. We observed an improvement in
growth kinetics of ADSCns and ADSCmos cultured
under hypoxic conditions. Interestingly, ADSCs from
obese patients showed decreased proliferation capacity.
ADSCmos presented slower PDTs than ADSCns cul-
tured under both normoxic and hypoxic conditions.

In previous experimental animal studies with mice,
rats, and rabbits, ADSCs were shown to have angiogenic
properties through the release of paracrine factors
(4–6). In fact, ADSCs are known to secrete a large
number of angiogenic factors, including VEGF, hepa-
tocyte growth factor, insulin-like growth factor 1, trans-
forming growth factor-�, and monocyte chemotactic
protein 1, among many others, which suggests an active
role of ADSCs in promoting revascularization of the
ischemic tissue (41–44).

To this end, we studied whether ADSCmos had a
different angiogenic potential. We measured levels of
TSP-1 at the gene expression and intracellular and
secreted-protein levels. TSP-1 is an adipokine with
antiangiogenic effects, the expression and secretion of
which have been shown to be strongly modulated by
insulin and glucose levels in adipocytes from rats with
diet-induced obesity (45) and the degree of obesity in
human adipose tissue from extremely obese and insu-
lin-resistant subjects (46, 47). In all cases, TSP-1 levels
were higher in ADSCmos than in ADSCns. Conditioned
medium from ADSCmos induced a decrease in HUVEC
capillary-like ring formation with respect to ADSCn
conditioned medium, indicating a much lower proan-
giogenic capacity of ADSCmos.

To study how obesity may affect ADSC differentiation
capacity, we induced differentiation of ADSCns and
ADSCmos toward both adipocytes and ECs (24, 48).
Several studies have shown an inverse correlation be-
tween BMI and preadipocyte differentiation capacity.
In women, obesity reduces the differentiation capacity
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of the adipose SVF (10, 27), and in Pima Indians,
preadipocyte differentiation correlated negatively with
the degree of central obesity (49). Impaired adipocyte
differentiation of preadipocytes in obesity has also been
reported (50). Here we found that ADSCmos showed
lower differentiation capacity to adipocytes than ADSCns.
Although the expression of the adipocyte-specific genes
LPL and FABP4 increased after the differentiation
process, ADSCmos presented lower expression levels
compared to ADSCns.

ADSC differentiation to ECs also showed differences
between both cells. Indeed, the expression of EC-
specific genes did not follow the same pattern in
ADSCmos and ADSCns. ADSCmos expressed higher
levels of VEGFR1 than ADSCns before and after EC-
differentiation. Only in vitro differentiated ADSCs pre-
sented the ability to form capillary-like ring structures.
EC differentiation similarly modified the expression of
PECAM-1, while VEGFR2, CD34, and vWF expression
levels were almost undetectable in both cell types and
did not change their expression after the differentia-
tion process.

In summary, ADSCs from morbidly obese patients
with metabolic syndrome show impairment in prolifer-
ation, angiogenic capacity, and differentiation poten-
tial. These effects may negatively influence their regen-
erative potential when used in cell therapy and also in
spontaneous repair of minor organ damage. Indeed,
ADSCs have already been tested in several clinical trials,
from repair of heart ischemic injury to Crohn’s disease
and multiple sclerosis (51–55). However, our observa-
tions indicate that the therapeutic strategies based on
autologous ADSC implantation would be impaired in
patients with obesity and metabolic syndrome.
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